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This paper presents the formulation, validation, and application of a sphgtral/
algorithm for numerical solution of the Navier—Stokes and heat/scalar transport equa-
tions in arbitrarily moving complex geometries. The new spectral element algorithm
is based on the arbitrary Lagrangian Eulerian formulation and utilizes modal expan-
sion of Jacobi polynomials in mixed triangular and quadrilateral elements in two
dimensions. Time integration is performed by stiffly stable schemes and can deliver
up to third-order time accuracy for transient problems. Test cases with sufficiently
smooth solutions demonstrate spectral convergence and low phase/dissipation error.
Preliminary simulation results for micro-mixers and micro-heat spreaders are also
presented. @ 2001 Elsevier Science
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1. INTRODUCTION

Fluid flow and heat transfer in arbitrarily moving complex geometries are observ
in various engineering applications. A predominant example is the micro electromech
ical systems (MEMS), where the device components exhibit high-frequency oscillatic
with micron-scale clearances [1, 2]. Experimentation and validation in micro-scales
challenging and expensive. Therefore, robust numerical simulation tools can be use
predict the performance of a micro-system design prior to the fabrication of hardwa
Numerical simulation tools for micro-system design should be able to analyze coup
fluid/structure interaction, heat/species transport problems in complex arbitrarily movi
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geometries, with reasonable time and space accuracy. These algorithms should also in
micro-scale-specific models, such as velocity slip for gas and electrokinetic effects for lig
micro-flows [3-5].

An overall computational approach to MEMS and various other scientific and en
neering problems requires multidisciplinary simulation capabilities, robust treatment
moving boundaries, geometric flexibility, and computational accuracy. Unstructyped
finite-element methods, delivering high-order accuracy and flexibility to discretize col
plex geometry, usually satisfy the last two requirements [6—8]. Robust treatment of
moving boundary requirement can be satisfied by the arbitrary Lagrangian Eulerian (Al
formulation, where the arbitrary motion and acceleration of the moving domain can be h
dled independent of the fluid motion. The ALE method was developed in the early 1970s
fluid flow problems in arbitrarily moving domains [9]. Hugheisal.[10] and Doneat al.
[11] developed finite-element-based ALE formulations for incompressible viscous flows
study dynamic fluid structure interaction problems (see also [12]). Further advances in
ALE method, especially inimprovement of the mesh velocities for moving boundaries, h:
been developed by Lohner and Yang [13]. The first spectral element ALE algorithm was
veloped by Ho, using quadrilateral spectral elements to study free surface flows [14]. In
meantime, Sherwin and Karniadakis developed an unstructured spgeefiaite-element
algorithmA exT ar, which utilized triangular and tetrahedral elements for two- and three
dimensional fluid flow problems [6, 7]. Warburton extend¥@x7 ar to include mixed
triangular and quadrilateral elements for two-dimensional and mixed tetrahedra, pyrar
prism, and hexahedra for three-dimensional fluid flow problems [15]. Using this approa
we developed an unstructurbg element ALE algorithm for solving the two-dimensional
incompressible Navier—Stokes and heat transfer/scalar transport equations in moving
mains. We present here the benchmark studies of time and space accuracy of our sct
including a study of its combined phase and dissipation error characteristics for long ti
integration. We also present a series of micro-fluidic applications, which demonstrate
bustness of the new algorithm under large mesh distortions. The principle demonstr:
here is that the ALE approach using unstructured spectral elements is robust and has
potential in numerical simulation of flow and heat transfer in moving domains.

This paper is organized as follows: Section 2 presents the new ALE formulation
solution of the Navier—Stokes and scalar transport equations. Section 3 validates the
algorithm and demonstrates its space, time, and phase accuracy. Section 4 presents
lation results for a micro-mixer and the micro heat spreader (MHS). Section 5 summari
and concludes our work.

2. ALE FORMULATION OF INCOMPRESSIBLE NAVIER-STOKES AND
SCALAR TRANSPORT EQUATIONS

In this section, we consider domains that are arbitrarily moving in time. This is not
trivial generalization because we have to discretize the time-dependent operators as wi
the time-dependent fields. In the ALE formulation, the local elemental operators are forn
at every time step. This is necessary to handle the mesh shape variations in time. Sinc
do not have an effective preconditioner for the full implicit solver, we use the full dire
Schur complement method for modal expansion oider 6, and the iterative-boundary,
direct-interior, Schur complement method for higher order modal expansions [7].
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Bearing in mind the aforementioned caveats, we demonstrate the possible advantag
using the ALE formulation with the spectral element method—namely, the usual advanta
of low dispersion and high accura@nd the novel fact that since the spectral elements ai
larger and less numerous than finite elements or finite volume cells, theyppart larger
deformations without becoming entangl¥de will also show that the triangles can support
deformation without losing excessive resolution.

2.1. Formulation

We consider the nondimensionalized incompressible Navier—Stokes equations wit
passively advected scalar field. The domain is time-depenght)( and it is moving with
velocityw . The governing equations are

ou 1, .

ﬁ+(u—w)-Vu_—Vp+ﬁeVu+f in Q(t) Q)

20 I

E“U_W)'W_P_evg in Q(t) 2)
V-u=0 inQq), 3)

whereu is the fluid velocity,0 is the nondimensional temperature or normalized concer
tration density,Re= U°Tph is the Reynolds numbeRe is the Peclet number, arfdis a
body force. The pressure is normalized?, whereU,, p, h, andv are the reference ve-
locity, fluid density, characteristic length, and kinematic viscosity, respectively. The Pec
number is the Reynolds number multiplied by either the Prandtl nunixerratio of the
momentum and thermal diffusivities) or the Schmidt numigx: fatio of the momentum
and mass diffusivities), for heat transfer or species transport applications, respectively.
heat transfer problems, the nondimensional temperature is given as

T-T,
AT

whereT, is a reference temperature, and is a predefined or desired temperature differ-
ence. For the species transport applicatiérean be identified as the concentration density
normalized by a reference value.

2.2. Temporal Discretization

The operator splitting scheme used in the new algorithm is an extension of a thi
order stiffly stable time integration scheme developed by Karniaddles[16]. Here, we
present extensions of this formulation for the ALE algorithm, including the scalar transp
equation. The splitting scheme involves these steps

Ji—1 Je—1
0= aqu™9+ At < > BN, w9 + f”+1> 4)
q=0 q=0

D
|

Ji-1 Je—1
= > agd" 9+ At < > BN, wha, 9”%) (5)

q=0 q=0
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wherex(X, t) are the coordinates of the moving frame, relative to a fixed set of coordina
X and

N(u,w) = (u—w) - Vu, (12)
N(u,w,6) = (u—w) - V6. (13)

The first four steps are explicitand computed using the valuganfv, which are computed
at the quadrature points using the methods outlined in [15]. The last four steps (Egs. |
(11)) are computed in a variational framework. For example, the variational statement
the pressure equation is

Find p € P" that satisfies

5= —(vv. (Y p n
(Vv,Vp) = (v,V <At)>+<v, 3Dru Yve P (14)

p=0 on T, (15)

whereTl, is the set of outflow boundaries, any is the set of boundaries with specified
Dirichlet velocity boundary conditions. Details on the methods used to solve the mat
systems resulting from these kinds of elliptic variational statements can be found in [6]

The constantag, By in Egs. (4)—(7) are integration weights and are defined in [16] (se
also Table 6.1 in [6]). The mesh velocity is in general arbitrary and can be specified explic
or can be obtained from a Laplace equation, following [14]. More recent work suggest
modified approach, where a variable coefficientis used in the Laplacian to provide enhar
smoothing, and thus, preventing sudden distortions in the mesh [13]. The incompress
Navier—Stokes and the scalar transport equations in an arbitrarily moving domain car
subject to various boundary conditions. To this end we considered various combination
the Dirichlet and Neumann type conditions on stationary and moving surfaces. Applicati
of these boundary conditions to various transport problems are demonstrated in Sectic
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3. ALGORITHM VERIFICATION

The new algorithm is the thermal/ALE extension to tiN&xZ ar family, originally
developed by Karniadakis and Sherwin [6, 7]. The origizNdkxT ar has been vali-
dated extensively by comparisons against the analytical solutions of the incompress
Navier—Stokes equations for stationary domains. In this section we present validatior
the thermal/ALE version of the algorithm by demonstrating its time and space accuracy
moving/dilating domains. Since large mesh deformations in ALE algorithms may result
skew elements, it is important to demonstrate the convergence characteristics of the me
for highly deformed elements. Therefore we first present a global convergence study
skew elements.

3.1. Global Convergence in Skew Elements

We now consider the effect of the skewness of the physical elements on the accul
of the projection operator without any mesh motion. In Fig. 1, we examine eight differe
meshes consisting of triangles and quadrilaterals. We start by projectiagssin(ry)
onto a square domain covered with standard elements. Figure 2 shows the results fo
modal basis, demonstrating that exponential convergence is achieved. Subsequently
make the elements covering the domain progressively more skewed in the B-H meshe
each case, we see that exponential convergence is achieved, even when one of the triar
elements has a minimum angle of about3degrees (see Case H in Fig. 1). Hence, the
accuracy of the method is extremely robust for badly shaped elements. Also, we note
the similarity of the convergence curves demonstrates that the rate of exponential con
gence is unaffected by the skewing for meshes A-G.

3.2. Convergence Studies of the Thermal/ALE Algorithm

Here we verify the convergence characteristics of the current algorithm using Stok
second problem: Fluid flow in a semiinfinite domain due to an oscillating plate. Our analy
also includes the wall temperature oscillations in phase with the wall velocity fluctuatior

FIG. 1. Meshes (A-H) consist of three quadrilaterals and two triangles, which are progressively skewed
shifting the interior vertex. Case H results in element minimum angle of dégrees. Convergence plots for all
these cases are shown in Fig. 2.
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FIG. 2. Convergence in thé&, norm formodal projectionof the functionu = sin(zrX) sin(zxy) on meshes
A-H shown in Fig. 1.

The boundary conditions on the wayl & 0) are

u(y,t) = Ugcoqwt),
0(y,t) = 6, coqwt),

whereU, andé, are the amplitudes of the nondimensional velocity and temperature, |
spectively. Both the temperature and velocity fluctuations have the oscillation frequenc
Since the plate oscillates laterally, these boundary conditions can be imposed withou
actual plate motion. The analytical solution for the temperature and velocity distributic
are given as a function of time and space as

w w
ucy,t) = U exp(—\/;) COS(Q)'[ — y\/;)

« w
o010 = oo = 52y oot~y 7).

wherev is the kinematic viscosity and is the thermal diffusivity of the fluid.
We studied flow and heat transfer under three different conditions covering the station
laterally oscillating, and dilating domains shown in Fig. 3.

(16)

1. Stationary domain: Here the oscillations in wall velocity and temperature are hand
via the time- and space-dependent boundary conditions without mesh motion. The nr
used in our calculations is shown in Fig. 3 (Case a). The side boundaries are peric
In order to avoid moving the upper boundary very far away from the bottom surface,
imposed the analytical solution at the top surface.

2. Laterally oscillating domain: Here we allowed the computational domain to oscilla
with the specified wall velocity and kept the top boundary stationary. Figure 3 (Case
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FIG. 3. Mesh utilized for code validation consisted of 16 spectral elements. The ALE algorithm is tested 1
stationary (Case a), laterally oscillating (Case b), and dilating domains (Case c). Snapshots of the maximum |
deformation are shown for moving domains (Cases b and c). The elemental discretization is shown by the t
lines and quadrature points for eighth-order expansion are shown by the thin lines.

shows an instance where the mesh deformation is the maximum (the dashed lines sho
mesh location half a period before the current position). The lateral deformation case d
not impose any mesh dilation. However, it allows us to determine the behavior of the n
algorithm during a “dilation-free” mesh motion.

3. Dilating domain: This is established by moving the four inner points of the mesh ir
time periodic manner, while the top, bottom, and side boundaries are kept stationary.
wall boundary conditions are implemented without the plate motion. This is a general ce
A snapshot of the computational grid at the maximum dilation position is shown in Fig.
(Case c). The maximum dilation is about 40% of the initial mesh configuration shown
the dashed lines. An ALE algorithm should honor the divergence-free velocity conditi
for incompressible flows, even under severe mesh dilation.

We tested the new ALE algorithm for the above three cases for various spectral expan:
orderN and time stepAt. We performed eight different simulations for each of the three
cases. Both the time and spatial accuracy were established for the stationary, late
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FIG. 4. Spectral convergence of the new ALE algorithm using a total of 16 elements with variable expans
orderN. The problem is integrated until timte= 1, with time stepAt = 107° using a third-order stiffly stable
time integration scheme.

oscillating and dilating cases. For the space accuracy, we selected a very small time
(At = 10®) with third-order time accuracy and integrated our results until tirel, by
varying the modal expansion ordex3N < 9. Figure 4 shows exponential decay of the
discretization error. This is spectral convergence, where doubling the degrees of freedon
direction results imore than two orders of magnitude reductiarthe discretization errors.

We established time accuracy of the algorithm by keeping the modal expansion ol
N =7, which guarantees the maximum spatial error to be® 18nd then systematically
varying the time steght and running the code until timte= 1. The new algorithm allows
up to third-order time accuracy. A sample time convergence plot is shown in Fig. 5. F
this particular case, second-order time accuracy is demonstrated and is consistent wit
integration scheme chosen in our numerical experiments. Only the results for the loc
dilating domain (Case c) are shown in Figs. 4 and 5 for clarity. The results of the latere
oscillating and stationary mesh cases are similar to those shown in the figure, and the!
not presented.

Stokes’ second problem is not particularly challenging for studying the combined ph:
and dissipation error characteristics of the scheme, which may become important during
time integration of unsteady flows. Therefore we benchmark combined phase/dissipa
error of a more challenging case next.

3.3. Combined Phase and Dissipation Error Characteristics

Reduction in phase and dissipation errors with increased spatial order of numer
schemes has been demonstrated earlier by Kreiss and Oliger [17]. This has been &
tification for utilization of high-order methods, such as the spettpathethods used in
this paper. In order to assess the combined phase and dissipation error of the algori
we examine error accumulation in long time integration of a convection diffusion equatic
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FIG.5. Time convergence for the ALE algorithm. The results are integrated using a second-order, stiffly ste
scheme until timeé = 1. The spectral expansion orderMf= 7 with 16 spectral elements is used. Second-order
time accuracy is verified.

We establish this by solving the two-dimensional Navier—Stokes and scalar transport ec
tions in a periodic box with moving internal mesh points for 10 time periods. The spect
element mesh and its motion are similar to Case c, shown in Fig. 3. However, the bou
ary conditions are periodic in all directions, unlike the case presented in the figure. T
maximum mesh dilation is 40% of the initial configuration indicated by the dashed lines
Fig. 3, Case c. Since the mesh motion is not uniform in the spanwise direction, incorr
treatment of mesh motion and dilation may create two-dimensionality in the problem, e\
for one-dimensional convection diffusion equation. Hence, we choose the initial conditic
of uniform velocityV = Uyey, and periodic streamwise temperature distributigr). With
these initial conditions and periodic boundary conditions in the spanwise and streamv
directions, two-dimensional Navier—Stokes and scalar transport equations are reducec
one-dimensional convection diffusion equation given as

30 30 9%
U - 0. 17
ot T %% Yo (17)

The analytical solution for this equation can be obtained as
0(X, t) = 6, sin(w (X — Uet)) exp(—aw?t), (18)

wheref, = sin(wx) is the initial condition and is the wave number. The domain length
is unity. We specified the parametéts= 1, » = 2r. The diffusion coefficient is chosen
o = 0.4/(27)? in order to reduce the diffusion effects; hence the wave can be maintain
for a large number of time periods.

In Fig. 6, we present the evolution of phase errorkimorm as a function of time. The
time step is fixed ait = 1.0 x 10~* and a third-order stiffly stable time integration scheme
is utilized. There are 16 quadrilateral elements and the elemental modal expansiaN ord
is successively increased frdth= 3 up toN = 9. Considering thexponential decay of the
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FIG. 6. NormalizedL, phase/dissipation error variation with respect to time for various valuls dhe left
figure shows the error for a stationary domain, corresponding to Case a in Fig. 3. The right figure shows loc
dilating mesh, which oscillates between the undeformed and deformed configurations of Case c in Fig. 3.
boundary conditions for this problem are periodic in the spanwise and streamwise directions.

analytical solution by time, the error also decreases exponentilgrder to circumvent
this we normalize the error by dividing it with e&paw?t) at any given time. Hence, the
error norm shows theormalized errohere. The results presented in Fig. 6 (left) correspon
to the nondilating mesh. Fd¥ = 3 the spatial resolution is relatively poor and the errol
increases by time with a larger slope than that ofthe 5 andN =7 cases. FON =9,
the time errors dominate over the discretization errors; hence we observe a different |
history of error evolution until the 10th time period (we decreased the time step furtt
and rerarN = 9 case to verify this claim). Overall exponential decrease imthrenalized
error is observed for increased modal expansion orders (t+07), indicatingspectral
convergencén the combined phase and dissipation error. It is noteworthy to indicate tr
the error evolution by time shows two spikes per time period. We believe this is due to
single wavelength chosen in the initial conditions.

The error evolution by time for the (locally) dilating grid is shown in Fig. 6 (right). The
error for the locally dilating mesh is increased by an order of magnitude, compared to
stationary domain. Furthermore, the local characteristics of therror are dominated by
the grid motion, which has a time period of 2. Effects of mesh motion are clearly seen
the right figure. Despite relatively larger errors, we still observe exponential decrease of
L, error at any given time with increased modal expansion order foN3< 7. ForN =9,
time error dominates the convergence far= 1.0 x 1074, similar to the stationary grid
case. These results demonstrate thatrate of growth of phase and dissipation errors in
time is reduced exponentiallyith increased modal expansion ordéy for both the static
and the ALE spectrdip algorithms.

4. APPLICATIONS

In this section, we present simulation results for coupled fluid flow and scalar transy
(and heat transfer) in moving domains. The coupled interdisciplinary solution of ma
momentum, and energy transport is of great interest in many engineering and micro-flu
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applications. Some applications of the new algorithm are demonstrated by species mi;
simulations in a micro-mixer and time-periodic forced convection simulations in a mic
heat spreader device.

4.1. Micro-channel Mixing Promoted by an Oscillating Cylinder

The main interest in micro-scale mixing devices is due to their potential use in biologic
and chemical sample preparation and pharmaceutical applications. Effective mixing du
turbulence cannot be observed in micro-scales, since most micro-flows correspond to
Reynolds number laminar or Stokes’ flows. Hence, micro-mixers must utilize other mixi
enhancement techniques. For example, mixing can be enhanced via chaotic advectiol
tained by pulsed source/sink systems, as demonstrated by Lee and Ho [18]. Their appr
is effective for low Reynolds number laminar flows. Volpettal. developed an alternative
mixing strategy [19], which utilizes a set of cross-flow channels perturbing Stokes’ flow
the main flow channel. Other micro-mixer designs based on peristaltic motion of viscc
fluid confined in a rectangular cavity and bend-induced stirring have also been propo
[20, 21]. These approaches seem feasible for various applications.

In this work, we present the preliminary results for mixing of two fluids of same der
sity in a micro-channel by stirring the fluid with an oscillating cylinder. Although detaile
mixing studies require three-dimensional simulations, our preliminary results are intenc
to demonstrate the capability of the new algorithm, and they are limited to two-dimensio
analysis. Two fluids are introduced at the channel entrance from separate inlets as shov
Fig. 7a. Fully developed flow conditions are assumed at the inlet, with parabolic veloc
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FIG. 7. The mesh used in mixing promotion utilized 32 quadrilateral and 314 triangplatements. The
elemental discretization is shown by the thick lines and the quadrature points for sixth-order modal expan
are shown by the thin lines. The undeformed mesh is shown in (a). The deformed mesh at the cylinder minir
position, due to the cylinder oscillation, is shown in (b).
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distribution and identical flow rates. The top stream carries a scalar quantity with conc
tration of 6 =1, and the stream entering from the bottom has a concentratién=df.
The zero-flux boundary conditions are used on the channel side walls and on the cylir
surface. The outflow boundary conditions specified at channel exit assumes partially f
developed conditions, where pressure is set to zero at the outflow, at one point.

The computational domain and the correspondipglement discretization are shown in
Fig. 7. We utilized a sixth-order modal expansion with 32 quadrilateral and 314 triangu
hp elements. The total number of elements is fixed during a simulation. The elemer
discretization is shown by the thick lines, and quadrature points are shown by the thin i
(Fig. 7a). Figure 7b shows the deformed mesh at the cylinder minimum position, cau
by the cylinder oscillation. The dashed dotted line shows the center of the channel.
elements near the cylinder experience large deformations. Based on our previous test re
(demonstrated in Figs. 1 and 2), it is clear that the unstructipechesh can sustain its
high-order accuracy under such large deformations. Thus, we do not have to remest
computational domain for most practical applications.

The oscillating cylinder perturbs the two streams with concentration densities: af
andd = 0 and promotes mixing. Mixing of the two streams depends on the fluid’s Schm
number,Sc=v/D, wherev is the kinematic viscosity an® is the molecular diffusion
coefficient. The ratio of fluid convection to mass diffusion is determined by the Pec
number (based on the mass diffusion coefficient). In this case the Peclet number in
is defined asPe= ReSc Since the mixing is promoted by the oscillating cylinder, the
Strouhal numbeBt=U /wd, defined by the maximum inlet velocity, the cylinder diametel
d, and oscillation frequency, also becomes an important parameter in characterizatic
of the micro-mixer. In this preliminary study, we fixed both the ReynoRs=£ 100) and
Strouhal Gt=0.6) numbers and varied the Schmidt number. Two simulation results wi
Sc= 1andSc= 5 are shown in Figs. 8 and 9, respectively. A comparison of the two cas
indicates sharper gradients in concentration densities for the increased Schmidt numbe
the Sc=1 case, the mass diffusion coefficient is relatively higher, and the concentrat
density contours are more diffused (see Fig. 8). We did not utilize any systematic mea:
of mixing in these preliminary studies.

Mixing simulations for large Schmidt number flows is more difficult than for the lowe
Schmidt number cases. The reason for this is the sharper concentration variations at tt
terface of the two fluids, making numerical solution increasingly more difficult to resolv
Low-order numerical methods exhibit increased numerical diffusion for underresolved
mulations, to an extent that the numerical diffusion dominates over the physical diffusi
and the solution resembles a I&¢case. For high-order methods, such as the spdupral/
element method used in this work, underresolution of sharp gradients results in osc
tions in the numerical solutions. Although this may seem to be a handicap of the spec
methods, oscillations in the solution can be used as indicators of the resolution qualit
the mixing problem. In our preliminary simulations, tB&= 1 case utilizes sixth-order
modal expansion (Fig. 8). The concentration density contours for this case show no sy
ous oscillations, and thus, the simulations are quite well resolved. F&dhe case, we
used eighth-order modal expansions. The contour plots for this case inslightity less-
resolved spots at various locations. Lower expansion orders result in increased oscillat
in the concentration density interface. On the other hand, the velocity and pressure fie
which depend on thReand St, are well resolved for this case with=5. Our algorithm
utilizes a single expansion order for the velocity and scalar fields, and the computatic
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FIG. 8. Four snapshots for mixing promoted by an oscillating cylinder. The concentration density contot
are shown foRe= 100,Sc= 1, St = 0.6. A total of 346 spectralip elements with sixth-order modal expansion
are used in the simulations. Arrows show the direction of motion of the cylinder. The mesh configuration is shc
in Fig. 7.

cost for solving the scalar transport field is about one fifth of the overall problem. Clearly
field-specific modal expansion procedure would be more efficient. F&¢heb case, the
computational efficiency would be increased by choosing 5 andN = 8 for the velocity
and scalar fields, respectively. Implementation of two different modal expansion orders
the flow and scalar fields will increase the efficiency of the new module.

4.2. Time-Periodic Forced Convection in Micro Heat Spreaders

Efficient dissipation of concentrated thermal loads is a challenging problem in mict
electronics applications. For example, inefficient heat dissipation from microelectror
components results in large chip surface temperatures, which commonly lead to chip r
function. Thermal management problems of microelectronic components worsen with 1
ther miniaturization of the computers and increase in the central processing unit speec

We recently developed a new micro heat spreader concept [22], which consists of |
reservoirs connected by a micro-channel, as shown in Fig. 10. Micro-membranes
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FIG. 9. Four snapshots for mixing promoted by an oscillating cylinder. The concentration density contot
are shown foRe= 100,Sc= 5, St = 0.6. A total of 346 spectralipelements with eighth-order modal expansion
are used in the simulations. Arrows show the direction of motion of the cylinder. The mesh configuration is she
in Fig. 7.

fabricated at the bottom sides of the reservoirs. Pumping action is generated by forcing
membranes with a phase differencenokither electrostatically or piezoelectrically. The
micro-membranes pump the fluid from one reservoir to another in a continuous cycle. C
ing the pumping cycle, heat generated by the source, located just above the micro-cha

micro
channels

FIG. 10. Schematic view of the micro heat spreader device.
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is conducted to the fluid. Because the height of the micro-channel is relatively small {
the order of 1Qum) the fluid heats very fast. As the hot fluid is pumped toward the exit c
the micro-channel and into the receiving reservoir, the flow suddenly expands and star
recirculate. This is desired to enhance mixing of the exiting hot fluid with the colder flu
in the mixing chamber. The pumping direction then reverses, and the procedure is repe
cyclically. This design allows two forced convection cooling passes per membrane cy
(left to right and right to left), with a resulting increase in the cooling efficiency. The flui
flow and heat transfer in this conceptual design is time-periodic.

We present two-dimensional preliminary simulations of fluid flow and heat transfer in tl
MHS device. The numerical simulations are performed as a function of nondimensionali:
parameters such as the Reynolds, Prandtl, and the Strouhal numbers. Once the optimul
rameters resulting in a minimum temperature variation of the MHS surface are determir
the actual device dimensions and the working fluid will be selected using the dynamic si
larity. The preliminary results presented here areRor= 10 andPr =1, approximately
corresponding to water and air, respectively. The Reynolds number is fixed at2r.
The characteristic velocity within the closed system is based on the membrane osc
tion amplitude and frequency, and thus, the Strouhal frequency of the simulations is ur
This choice of the characteristic velocity reduces the nondimensional parameters fro
(Re Pr, andSt) to 2 (ReandPr). The temperature contours at six different stages of it
operation forPr =10 application are shown in Fig. 11. For this case, the MHS remove
68 Wicnt heat flux, with 10 K temperature difference between the heat source and

Temperature Contours
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r 1 r i -
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30K

=
=
Down Up Down

‘ Heat Flux | Heat Flux
Y

]
] w ]
= = 2
g I I & g I Im
Down Up Up Down
| Heat Flux +Heat Flux
A\l
e bt e
2
[=1
g I l§ g I I§

Membranes are at Maximum Deflection Membranes are at Maximum Deflection
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FIG.11. Temperature contours for forced convection cooling via a micro heat spréaeer 2z, Pr = 10).
The working fluid is water. Allowing 10 K temperature difference between the heat source and the side wze
68 W/cnt heat flux can be removed. Direction of the membrane motion is shown vertically. Temperature conto
at six equally spaced time intervals are shown.
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FIG. 12. Nondimensional temperature variation on the micro heat spreader top surface for five instance
time. The maximum nondimensional temperature for pure conduction cooling is &hqut 7.8, for forced
convection withRe= 27 andPr = 1.0, 6,2, = 2.2. For Re= 27 andPr = 10.0, 6,,ax = 1.0 is obtained.

ambient. The MHS top surface temperature variations at five different instances are sh
in Fig. 12. The maximum nondimensional temperature for pure conduction cooling is ab
Omax = 7.8; for forced convection witiRe= 27 and Pr = 1.0 the maximum temperature
is reduced t@nax = 2.2. ForRe= 27 andPr = 10.0, the maximum temperature is further
reduced t@nax = 1.0. The results indicate considerable reduction in the maximum nonc
mensional surface temperature due to the time-periodic forced convection effects. Dete
analysis of the MHS devices is presented in [22].

5. SUMMARY AND CONCLUSIONS

We developed a spectralp element method based on the ALE formulation of two-
dimensional Navier—Stokes and scalar transport equations in moving domains. The
algorithm uses a combined unstructured/structured grid, which offers great flexibility
mesh discretization. Spectral convergence characteristics of the algorithm allow utiliza
of relatively fewer degrees of freedom than low-order methods for a desired accuracy.
is an advantage in reduction and management of data. Also, utilization of relatively lar
elements than the low-order methods enables spectral element ALE algorithms to su
more severe mesh deformations than their low-order counterparts, reducing or elimina
the necessity for remeshing.

The thermal/fluidic transport problems have different diffusion/convection time scals
In the time-periodic examples of the MHS or micro-mixers, accumulation of phase a
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dissipation errors can become problematic. Especially simulatiorBrfer 10, compared
to the Pr =1 case, require approximately an order of magnitude increase in simulati
time to reach time-periodic solutions. For long time-integration cases, speptna¢thods
exhibit exponential reduction in the time rate of growth of phase and dissipation errc
This constitutes an experimental justification for using high-order methods.

Finally, the new algorithm allows development of coupled interdisciplinary simulatio
tools for conceptual design and verification of micro electromechanical systems. The mic
mixer and the MHS examples given in this paper are purely conceptual devices, develc
using the new ALE algorithm.
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