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This paper presents the formulation, validation, and application of a spectral/hp
algorithm for numerical solution of the Navier–Stokes and heat/scalar transport equa-
tions in arbitrarily moving complex geometries. The new spectral element algorithm
is based on the arbitrary Lagrangian Eulerian formulation and utilizes modal expan-
sion of Jacobi polynomials in mixed triangular and quadrilateral elements in two
dimensions. Time integration is performed by stiffly stable schemes and can deliver
up to third-order time accuracy for transient problems. Test cases with sufficiently
smooth solutions demonstrate spectral convergence and low phase/dissipation error.
Preliminary simulation results for micro-mixers and micro-heat spreaders are also
presented. c© 2001 Elsevier Science
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1. INTRODUCTION

Fluid flow and heat transfer in arbitrarily moving complex geometries are observed
in various engineering applications. A predominant example is the micro electromechan-
ical systems (MEMS), where the device components exhibit high-frequency oscillations
with micron-scale clearances [1, 2]. Experimentation and validation in micro-scales are
challenging and expensive. Therefore, robust numerical simulation tools can be used to
predict the performance of a micro-system design prior to the fabrication of hardware.
Numerical simulation tools for micro-system design should be able to analyze coupled
fluid/structure interaction, heat/species transport problems in complex arbitrarily moving
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geometries, with reasonable time and space accuracy. These algorithms should also include
micro-scale-specific models, such as velocity slip for gas and electrokinetic effects for liquid
micro-flows [3–5].

An overall computational approach to MEMS and various other scientific and engi-
neering problems requires multidisciplinary simulation capabilities, robust treatment of
moving boundaries, geometric flexibility, and computational accuracy. Unstructuredhp
finite-element methods, delivering high-order accuracy and flexibility to discretize com-
plex geometry, usually satisfy the last two requirements [6–8]. Robust treatment of the
moving boundary requirement can be satisfied by the arbitrary Lagrangian Eulerian (ALE)
formulation, where the arbitrary motion and acceleration of the moving domain can be han-
dled independent of the fluid motion. The ALE method was developed in the early 1970s for
fluid flow problems in arbitrarily moving domains [9]. Hugheset al. [10] and Doneaet al.
[11] developed finite-element-based ALE formulations for incompressible viscous flows to
study dynamic fluid structure interaction problems (see also [12]). Further advances in the
ALE method, especially in improvement of the mesh velocities for moving boundaries, have
been developed by Lohner and Yang [13]. The first spectral element ALE algorithm was de-
veloped by Ho, using quadrilateral spectral elements to study free surface flows [14]. In the
meantime, Sherwin and Karniadakis developed an unstructured spectral/hp finite-element
algorithmNεκT αr, which utilized triangular and tetrahedral elements for two- and three-
dimensional fluid flow problems [6, 7]. Warburton extendedNεκT αr to include mixed
triangular and quadrilateral elements for two-dimensional and mixed tetrahedra, pyramid,
prism, and hexahedra for three-dimensional fluid flow problems [15]. Using this approach,
we developed an unstructuredhp element ALE algorithm for solving the two-dimensional
incompressible Navier–Stokes and heat transfer/scalar transport equations in moving do-
mains. We present here the benchmark studies of time and space accuracy of our scheme,
including a study of its combined phase and dissipation error characteristics for long time
integration. We also present a series of micro-fluidic applications, which demonstrate ro-
bustness of the new algorithm under large mesh distortions. The principle demonstrated
here is that the ALE approach using unstructured spectral elements is robust and has great
potential in numerical simulation of flow and heat transfer in moving domains.

This paper is organized as follows: Section 2 presents the new ALE formulation for
solution of the Navier–Stokes and scalar transport equations. Section 3 validates the new
algorithm and demonstrates its space, time, and phase accuracy. Section 4 presents simu-
lation results for a micro-mixer and the micro heat spreader (MHS). Section 5 summarizes
and concludes our work.

2. ALE FORMULATION OF INCOMPRESSIBLE NAVIER–STOKES AND

SCALAR TRANSPORT EQUATIONS

In this section, we consider domains that are arbitrarily moving in time. This is not a
trivial generalization because we have to discretize the time-dependent operators as well as
the time-dependent fields. In the ALE formulation, the local elemental operators are formed
at every time step. This is necessary to handle the mesh shape variations in time. Since we
do not have an effective preconditioner for the full implicit solver, we use the full direct
Schur complement method for modal expansion orderN ≤ 6, and the iterative-boundary,
direct-interior, Schur complement method for higher order modal expansions [7].
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Bearing in mind the aforementioned caveats, we demonstrate the possible advantages of
using the ALE formulation with the spectral element method—namely, the usual advantages
of low dispersion and high accuracyand the novel fact that since the spectral elements are
larger and less numerous than finite elements or finite volume cells, they cansupport larger
deformations without becoming entangled. We will also show that the triangles can support
deformation without losing excessive resolution.

2.1. Formulation

We consider the nondimensionalized incompressible Navier–Stokes equations with a
passively advected scalar field. The domain is time-dependent (Ä(t)), and it is moving with
velocityw . The governing equations are

∂u
∂t
+ (u− w) · ∇u = −∇ p+ 1

Re
∇2u+ f in Ä(t) (1)

∂θ

∂t
+ (u− w) · ∇θ = 1

Pe
∇2θ in Ä(t) (2)

∇ · u = 0 inÄ(t), (3)

whereu is the fluid velocity,θ is the nondimensional temperature or normalized concen-
tration density,Re= Uoρh

ν
is the Reynolds number,Pe is the Peclet number, andf is a

body force. The pressure is normalizedρU2
o , whereUo, ρ, h, andν are the reference ve-

locity, fluid density, characteristic length, and kinematic viscosity, respectively. The Peclet
number is the Reynolds number multiplied by either the Prandtl number (Pr : ratio of the
momentum and thermal diffusivities) or the Schmidt number (Sc: ratio of the momentum
and mass diffusivities), for heat transfer or species transport applications, respectively. For
heat transfer problems, the nondimensional temperature is given as

θ = T − To

1T
,

whereTo is a reference temperature, and1T is a predefined or desired temperature differ-
ence. For the species transport applications,θ can be identified as the concentration density
normalized by a reference value.

2.2. Temporal Discretization

The operator splitting scheme used in the new algorithm is an extension of a third-
order stiffly stable time integration scheme developed by Karniadakiset al. [16]. Here, we
present extensions of this formulation for the ALE algorithm, including the scalar transport
equation. The splitting scheme involves these steps

ũ =
J i−1∑
q=0

αqun−q +1t

(
Je−1∑
q=0

βqN(un−q,wn−q)+ f n+1

)
(4)

θ̃ =
J i−1∑
q=0

αqθ
n−q +1t

(
Je−1∑
q=0

βqÑ(un−q,wn−q, θn−q)

)
(5)
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xn+1 =
J i−1∑
q=0

αqxn−q +1t

(
Je−1∑
q=0

βqwn−q

)
(6)

∂ p̄n+1

∂n
= n ·

[
−

Je−1∑
q=0

βqN(un−q,wn−q)− 1

Re

Je−1∑
q=0

βq[∇ × (∇ × un−q)]

]
(7)

∇2 p̄n+1 = ∇ ·
(

ũ
1t

)
(8)

∇2un+1− γ0Re

1t
un+1 = −Re

1t
(ũ−1t∇ p̄n+1) (9)

∇2θn+1− γ0Pe

1t
θn+1 = − Pe

1t
θ̃ (10)

∇2wn+1 = 0, (11)

wherex(X, t) are the coordinates of the moving frame, relative to a fixed set of coordinates
X and

N(u,w) = (u− w) · ∇u, (12)

Ñ(u,w, θ) = (u− w) · ∇θ. (13)

The first four steps are explicit and computed using the values ofθ ,u,w, which are computed
at the quadrature points using the methods outlined in [15]. The last four steps (Eqs. (7)–
(11)) are computed in a variational framework. For example, the variational statement for
the pressure equation is

Find p̄ ∈ Pn that satisfies

(∇v,∇ p̄) = −
(
v,∇ ·

(
û
1t

))
+
(
v,
∂ p̄

∂n

)
0u

∀v ∈ Pn (14)

p̄ = 0 on 0o, (15)

where0o is the set of outflow boundaries, and0u is the set of boundaries with specified
Dirichlet velocity boundary conditions. Details on the methods used to solve the matrix
systems resulting from these kinds of elliptic variational statements can be found in [6].

The constantsαq, βq in Eqs. (4)–(7) are integration weights and are defined in [16] (see
also Table 6.1 in [6]). The mesh velocity is in general arbitrary and can be specified explicitly
or can be obtained from a Laplace equation, following [14]. More recent work suggests a
modified approach, where a variable coefficient is used in the Laplacian to provide enhanced
smoothing, and thus, preventing sudden distortions in the mesh [13]. The incompressible
Navier–Stokes and the scalar transport equations in an arbitrarily moving domain can be
subject to various boundary conditions. To this end we considered various combinations of
the Dirichlet and Neumann type conditions on stationary and moving surfaces. Applications
of these boundary conditions to various transport problems are demonstrated in Section 4.



496 BESKOK AND WARBURTON

3. ALGORITHM VERIFICATION

The new algorithm is the thermal/ALE extension to theNεκT αr family, originally
developed by Karniadakis and Sherwin [6, 7]. The originalNεκT αr has been vali-
dated extensively by comparisons against the analytical solutions of the incompressible
Navier–Stokes equations for stationary domains. In this section we present validation of
the thermal/ALE version of the algorithm by demonstrating its time and space accuracy for
moving/dilating domains. Since large mesh deformations in ALE algorithms may result in
skew elements, it is important to demonstrate the convergence characteristics of the method
for highly deformed elements. Therefore we first present a global convergence study for
skew elements.

3.1. Global Convergence in Skew Elements

We now consider the effect of the skewness of the physical elements on the accuracy
of the projection operator without any mesh motion. In Fig. 1, we examine eight different
meshes consisting of triangles and quadrilaterals. We start by projecting sin(πx) sin(πy)
onto a square domain covered with standard elements. Figure 2 shows the results for the
modalbasis, demonstrating that exponential convergence is achieved. Subsequently, we
make the elements covering the domain progressively more skewed in the B–H meshes. In
each case, we see that exponential convergence is achieved, even when one of the triangular
elements has a minimum angle of about 10−3 degrees (see Case H in Fig. 1). Hence, the
accuracy of the method is extremely robust for badly shaped elements. Also, we note that
the similarity of the convergence curves demonstrates that the rate of exponential conver-
gence is unaffected by the skewing for meshes A–G.

3.2. Convergence Studies of the Thermal/ALE Algorithm

Here we verify the convergence characteristics of the current algorithm using Stokes’
second problem: Fluid flow in a semiinfinite domain due to an oscillating plate. Our analysis
also includes the wall temperature oscillations in phase with the wall velocity fluctuations.

FIG. 1. Meshes (A–H) consist of three quadrilaterals and two triangles, which are progressively skewed by
shifting the interior vertex. Case H results in element minimum angle of 10−3 degrees. Convergence plots for all
these cases are shown in Fig. 2.
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FIG. 2. Convergence in theL2 norm for modal projectionof the functionu = sin(πx) sin(πy) on meshes
A–H shown in Fig. 1.

The boundary conditions on the wall (y = 0) are

u(y, t) = Uo cos(ωt),

θ(y, t) = θo cos(ωt),

whereUo andθo are the amplitudes of the nondimensional velocity and temperature, re-
spectively. Both the temperature and velocity fluctuations have the oscillation frequencyω.
Since the plate oscillates laterally, these boundary conditions can be imposed without an
actual plate motion. The analytical solution for the temperature and velocity distributions
are given as a function of time and space as

u(y, t) = Uo exp

(
−
√
ω

2ν
y

)
cos

(
ωt − y

√
ω

2ν

)
(16)

θ(y, t) = θo exp

(
−
√
ω

2α
y

)
cos

(
ωt − y

√
ω

2α

)
,

whereν is the kinematic viscosity andα is the thermal diffusivity of the fluid.
We studied flow and heat transfer under three different conditions covering the stationary,

laterally oscillating, and dilating domains shown in Fig. 3.

1. Stationary domain: Here the oscillations in wall velocity and temperature are handled
via the time- and space-dependent boundary conditions without mesh motion. The mesh
used in our calculations is shown in Fig. 3 (Case a). The side boundaries are periodic.
In order to avoid moving the upper boundary very far away from the bottom surface, we
imposed the analytical solution at the top surface.

2. Laterally oscillating domain: Here we allowed the computational domain to oscillate
with the specified wall velocity and kept the top boundary stationary. Figure 3 (Case b)
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FIG. 3. Mesh utilized for code validation consisted of 16 spectral elements. The ALE algorithm is tested for
stationary (Case a), laterally oscillating (Case b), and dilating domains (Case c). Snapshots of the maximum mesh
deformation are shown for moving domains (Cases b and c). The elemental discretization is shown by the thick
lines and quadrature points for eighth-order expansion are shown by the thin lines.

shows an instance where the mesh deformation is the maximum (the dashed lines show the
mesh location half a period before the current position). The lateral deformation case does
not impose any mesh dilation. However, it allows us to determine the behavior of the new
algorithm during a “dilation-free” mesh motion.

3. Dilating domain: This is established by moving the four inner points of the mesh in a
time periodic manner, while the top, bottom, and side boundaries are kept stationary. The
wall boundary conditions are implemented without the plate motion. This is a general case.
A snapshot of the computational grid at the maximum dilation position is shown in Fig. 3
(Case c). The maximum dilation is about 40% of the initial mesh configuration shown by
the dashed lines. An ALE algorithm should honor the divergence-free velocity condition
for incompressible flows, even under severe mesh dilation.

We tested the new ALE algorithm for the above three cases for various spectral expansion
orderN and time step1t . We performed eight different simulations for each of the three
cases. Both the time and spatial accuracy were established for the stationary, laterally
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FIG. 4. Spectral convergence of the new ALE algorithm using a total of 16 elements with variable expansion
order N. The problem is integrated until timet = 1, with time step1t = 10−5 using a third-order stiffly stable
time integration scheme.

oscillating and dilating cases. For the space accuracy, we selected a very small time step
(1t = 10−5) with third-order time accuracy and integrated our results until timet = 1, by
varying the modal expansion order 3≤ N ≤ 9. Figure 4 shows exponential decay of theL∞
discretization error. This is spectral convergence, where doubling the degrees of freedom per
direction results inmore than two orders of magnitude reductionin the discretization errors.

We established time accuracy of the algorithm by keeping the modal expansion order
N= 7, which guarantees the maximum spatial error to be 10−8, and then systematically
varying the time step1t and running the code until timet = 1. The new algorithm allows
up to third-order time accuracy. A sample time convergence plot is shown in Fig. 5. For
this particular case, second-order time accuracy is demonstrated and is consistent with the
integration scheme chosen in our numerical experiments. Only the results for the locally
dilating domain (Case c) are shown in Figs. 4 and 5 for clarity. The results of the laterally
oscillating and stationary mesh cases are similar to those shown in the figure, and they are
not presented.

Stokes’ second problem is not particularly challenging for studying the combined phase
and dissipation error characteristics of the scheme, which may become important during long
time integration of unsteady flows. Therefore we benchmark combined phase/dissipation
error of a more challenging case next.

3.3. Combined Phase and Dissipation Error Characteristics

Reduction in phase and dissipation errors with increased spatial order of numerical
schemes has been demonstrated earlier by Kreiss and Oliger [17]. This has been a jus-
tification for utilization of high-order methods, such as the spectral/hp methods used in
this paper. In order to assess the combined phase and dissipation error of the algorithm,
we examine error accumulation in long time integration of a convection diffusion equation.
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FIG. 5. Time convergence for the ALE algorithm. The results are integrated using a second-order, stiffly stable
scheme until timet = 1. The spectral expansion order ofN = 7 with 16 spectral elements is used. Second-order
time accuracy is verified.

We establish this by solving the two-dimensional Navier–Stokes and scalar transport equa-
tions in a periodic box with moving internal mesh points for 10 time periods. The spectral
element mesh and its motion are similar to Case c, shown in Fig. 3. However, the bound-
ary conditions are periodic in all directions, unlike the case presented in the figure. The
maximum mesh dilation is 40% of the initial configuration indicated by the dashed lines in
Fig. 3, Case c. Since the mesh motion is not uniform in the spanwise direction, incorrect
treatment of mesh motion and dilation may create two-dimensionality in the problem, even
for one-dimensional convection diffusion equation. Hence, we choose the initial conditions
of uniform velocityV=Uoex, and periodic streamwise temperature distributionθ(x). With
these initial conditions and periodic boundary conditions in the spanwise and streamwise
directions, two-dimensional Navier–Stokes and scalar transport equations are reduced to a
one-dimensional convection diffusion equation given as

∂θ

∂t
+Uo

∂θ

∂x
= α ∂

2θ

∂x2
. (17)

The analytical solution for this equation can be obtained as

θ(x, t) = θo sin(ω(x −Uot)) exp(−αω2t), (18)

whereθo = sin(ωx) is the initial condition andω is the wave number. The domain length
is unity. We specified the parametersUo= 1, ω = 2π . The diffusion coefficient is chosen
α = 0.4/(2π)2 in order to reduce the diffusion effects; hence the wave can be maintained
for a large number of time periods.

In Fig. 6, we present the evolution of phase errors inL2 norm as a function of time. The
time step is fixed at1t = 1.0× 10−4 and a third-order stiffly stable time integration scheme
is utilized. There are 16 quadrilateral elements and the elemental modal expansion orderN
is successively increased fromN= 3 up toN= 9. Considering theexponential decay of the
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FIG. 6. NormalizedL2 phase/dissipation error variation with respect to time for various values ofN. The left
figure shows the error for a stationary domain, corresponding to Case a in Fig. 3. The right figure shows locally
dilating mesh, which oscillates between the undeformed and deformed configurations of Case c in Fig. 3. The
boundary conditions for this problem are periodic in the spanwise and streamwise directions.

analytical solution by time, the error also decreases exponentially. In order to circumvent
this we normalize the error by dividing it with exp(−αω2t) at any given time. Hence, theL2

error norm shows thenormalized errorhere. The results presented in Fig. 6 (left) correspond
to the nondilating mesh. ForN= 3 the spatial resolution is relatively poor and the error
increases by time with a larger slope than that of theN= 5 andN= 7 cases. ForN= 9,
the time errors dominate over the discretization errors; hence we observe a different time
history of error evolution until the 10th time period (we decreased the time step further
and reranN= 9 case to verify this claim). Overall exponential decrease in thenormalized
error is observed for increased modal expansion orders (up toN = 7), indicatingspectral
convergencein the combined phase and dissipation error. It is noteworthy to indicate that
the error evolution by time shows two spikes per time period. We believe this is due to the
single wavelength chosen in the initial conditions.

The error evolution by time for the (locally) dilating grid is shown in Fig. 6 (right). The
error for the locally dilating mesh is increased by an order of magnitude, compared to the
stationary domain. Furthermore, the local characteristics of theL2 error are dominated by
the grid motion, which has a time period of 2. Effects of mesh motion are clearly seen in
the right figure. Despite relatively larger errors, we still observe exponential decrease of the
L2 error at any given time with increased modal expansion order for 3≤ N ≤ 7. ForN= 9,
time error dominates the convergence for1t = 1.0× 10−4, similar to the stationary grid
case. These results demonstrate thatthe rate of growth of phase and dissipation errors in
time is reduced exponentiallywith increased modal expansion orderN, for both the static
and the ALE spectral/hp algorithms.

4. APPLICATIONS

In this section, we present simulation results for coupled fluid flow and scalar transport
(and heat transfer) in moving domains. The coupled interdisciplinary solution of mass,
momentum, and energy transport is of great interest in many engineering and micro-fluidic
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applications. Some applications of the new algorithm are demonstrated by species mixing
simulations in a micro-mixer and time-periodic forced convection simulations in a micro
heat spreader device.

4.1. Micro-channel Mixing Promoted by an Oscillating Cylinder

The main interest in micro-scale mixing devices is due to their potential use in biological
and chemical sample preparation and pharmaceutical applications. Effective mixing due to
turbulence cannot be observed in micro-scales, since most micro-flows correspond to low
Reynolds number laminar or Stokes’ flows. Hence, micro-mixers must utilize other mixing
enhancement techniques. For example, mixing can be enhanced via chaotic advection ob-
tained by pulsed source/sink systems, as demonstrated by Lee and Ho [18]. Their approach
is effective for low Reynolds number laminar flows. Volpertet al.developed an alternative
mixing strategy [19], which utilizes a set of cross-flow channels perturbing Stokes’ flow in
the main flow channel. Other micro-mixer designs based on peristaltic motion of viscous
fluid confined in a rectangular cavity and bend-induced stirring have also been proposed
[20, 21]. These approaches seem feasible for various applications.

In this work, we present the preliminary results for mixing of two fluids of same den-
sity in a micro-channel by stirring the fluid with an oscillating cylinder. Although detailed
mixing studies require three-dimensional simulations, our preliminary results are intended
to demonstrate the capability of the new algorithm, and they are limited to two-dimensional
analysis. Two fluids are introduced at the channel entrance from separate inlets as shown in
Fig. 7a. Fully developed flow conditions are assumed at the inlet, with parabolic velocity

FIG. 7. The mesh used in mixing promotion utilized 32 quadrilateral and 314 triangularhp elements. The
elemental discretization is shown by the thick lines and the quadrature points for sixth-order modal expansion
are shown by the thin lines. The undeformed mesh is shown in (a). The deformed mesh at the cylinder minimum
position, due to the cylinder oscillation, is shown in (b).
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distribution and identical flow rates. The top stream carries a scalar quantity with concen-
tration of θ = 1, and the stream entering from the bottom has a concentration ofθ = 0.
The zero-flux boundary conditions are used on the channel side walls and on the cylinder
surface. The outflow boundary conditions specified at channel exit assumes partially fully
developed conditions, where pressure is set to zero at the outflow, at one point.

The computational domain and the correspondinghpelement discretization are shown in
Fig. 7. We utilized a sixth-order modal expansion with 32 quadrilateral and 314 triangular
hp elements. The total number of elements is fixed during a simulation. The elemental
discretization is shown by the thick lines, and quadrature points are shown by the thin lines
(Fig. 7a). Figure 7b shows the deformed mesh at the cylinder minimum position, caused
by the cylinder oscillation. The dashed dotted line shows the center of the channel. The
elements near the cylinder experience large deformations. Based on our previous test results
(demonstrated in Figs. 1 and 2), it is clear that the unstructuredhp mesh can sustain its
high-order accuracy under such large deformations. Thus, we do not have to remesh the
computational domain for most practical applications.

The oscillating cylinder perturbs the two streams with concentration densities ofθ = 1
andθ = 0 and promotes mixing. Mixing of the two streams depends on the fluid’s Schmidt
number,Sc= ν/D, whereν is the kinematic viscosity andD is the molecular diffusion
coefficient. The ratio of fluid convection to mass diffusion is determined by the Peclet
number (based on the mass diffusion coefficient). In this case the Peclet number in (2)
is defined asPe= ReSc. Since the mixing is promoted by the oscillating cylinder, the
Strouhal numberSt=U/ωd, defined by the maximum inlet velocity, the cylinder diameter
d, and oscillation frequencyω, also becomes an important parameter in characterization
of the micro-mixer. In this preliminary study, we fixed both the Reynolds (Re= 100) and
Strouhal (St= 0.6) numbers and varied the Schmidt number. Two simulation results with
Sc= 1 andSc= 5 are shown in Figs. 8 and 9, respectively. A comparison of the two cases
indicates sharper gradients in concentration densities for the increased Schmidt number. For
the Sc= 1 case, the mass diffusion coefficient is relatively higher, and the concentration
density contours are more diffused (see Fig. 8). We did not utilize any systematic measure
of mixing in these preliminary studies.

Mixing simulations for large Schmidt number flows is more difficult than for the lower
Schmidt number cases. The reason for this is the sharper concentration variations at the in-
terface of the two fluids, making numerical solution increasingly more difficult to resolve.
Low-order numerical methods exhibit increased numerical diffusion for underresolved si-
mulations, to an extent that the numerical diffusion dominates over the physical diffusion,
and the solution resembles a lowSccase. For high-order methods, such as the spectral/hp
element method used in this work, underresolution of sharp gradients results in oscilla-
tions in the numerical solutions. Although this may seem to be a handicap of the spectral
methods, oscillations in the solution can be used as indicators of the resolution quality of
the mixing problem. In our preliminary simulations, theSc= 1 case utilizes sixth-order
modal expansion (Fig. 8). The concentration density contours for this case show no spuri-
ous oscillations, and thus, the simulations are quite well resolved. For theSc= 5 case, we
used eighth-order modal expansions. The contour plots for this case indicateslightly less-
resolved spots at various locations. Lower expansion orders result in increased oscillations
in the concentration density interface. On the other hand, the velocity and pressure fields,
which depend on theReandSt, are well resolved for this case withN= 5. Our algorithm
utilizes a single expansion order for the velocity and scalar fields, and the computational
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FIG. 8. Four snapshots for mixing promoted by an oscillating cylinder. The concentration density contours
are shown forRe= 100,Sc= 1, St= 0.6. A total of 346 spectral/hpelements with sixth-order modal expansion
are used in the simulations. Arrows show the direction of motion of the cylinder. The mesh configuration is shown
in Fig. 7.

cost for solving the scalar transport field is about one fifth of the overall problem. Clearly a
field-specific modal expansion procedure would be more efficient. For theSc= 5 case, the
computational efficiency would be increased by choosingN= 5 andN= 8 for the velocity
and scalar fields, respectively. Implementation of two different modal expansion orders for
the flow and scalar fields will increase the efficiency of the new module.

4.2. Time-Periodic Forced Convection in Micro Heat Spreaders

Efficient dissipation of concentrated thermal loads is a challenging problem in micro-
electronics applications. For example, inefficient heat dissipation from microelectronic
components results in large chip surface temperatures, which commonly lead to chip mal-
function. Thermal management problems of microelectronic components worsen with fur-
ther miniaturization of the computers and increase in the central processing unit speeds.

We recently developed a new micro heat spreader concept [22], which consists of two
reservoirs connected by a micro-channel, as shown in Fig. 10. Micro-membranes are
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FIG. 9. Four snapshots for mixing promoted by an oscillating cylinder. The concentration density contours
are shown forRe= 100,Sc= 5, St= 0.6.A total of 346 spectral/hpelements with eighth-order modal expansion
are used in the simulations. Arrows show the direction of motion of the cylinder. The mesh configuration is shown
in Fig. 7.

fabricated at the bottom sides of the reservoirs. Pumping action is generated by forcing the
membranes with a phase difference ofπ either electrostatically or piezoelectrically. The
micro-membranes pump the fluid from one reservoir to another in a continuous cycle. Dur-
ing the pumping cycle, heat generated by the source, located just above the micro-channel,

FIG. 10. Schematic view of the micro heat spreader device.



506 BESKOK AND WARBURTON

is conducted to the fluid. Because the height of the micro-channel is relatively small (on
the order of 10µm) the fluid heats very fast. As the hot fluid is pumped toward the exit of
the micro-channel and into the receiving reservoir, the flow suddenly expands and starts to
recirculate. This is desired to enhance mixing of the exiting hot fluid with the colder fluid
in the mixing chamber. The pumping direction then reverses, and the procedure is repeated
cyclically. This design allows two forced convection cooling passes per membrane cycle
(left to right and right to left), with a resulting increase in the cooling efficiency. The fluid
flow and heat transfer in this conceptual design is time-periodic.

We present two-dimensional preliminary simulations of fluid flow and heat transfer in the
MHS device. The numerical simulations are performed as a function of nondimensionalized
parameters such as the Reynolds, Prandtl, and the Strouhal numbers. Once the optimum pa-
rameters resulting in a minimum temperature variation of the MHS surface are determined,
the actual device dimensions and the working fluid will be selected using the dynamic simi-
larity. The preliminary results presented here are forPr = 10 andPr = 1, approximately
corresponding to water and air, respectively. The Reynolds number is fixed atRe= 2π .
The characteristic velocity within the closed system is based on the membrane oscilla-
tion amplitude and frequency, and thus, the Strouhal frequency of the simulations is unity.
This choice of the characteristic velocity reduces the nondimensional parameters from 3
(Re, Pr , andSt) to 2 (ReandPr ). The temperature contours at six different stages of its
operation forPr = 10 application are shown in Fig. 11. For this case, the MHS removes
68 W/cm2 heat flux, with 10 K temperature difference between the heat source and the

FIG. 11. Temperature contours for forced convection cooling via a micro heat spreader (Re= 2π , Pr = 10).
The working fluid is water. Allowing 10 K temperature difference between the heat source and the side walls,
68 W/cm2 heat flux can be removed. Direction of the membrane motion is shown vertically. Temperature contours
at six equally spaced time intervals are shown.
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FIG. 12. Nondimensional temperature variation on the micro heat spreader top surface for five instances in
time. The maximum nondimensional temperature for pure conduction cooling is aboutθmax = 7.8, for forced
convection withRe= 2π andPr = 1.0, θmax = 2.2. For Re= 2π andPr = 10.0, θmax = 1.0 is obtained.

ambient. The MHS top surface temperature variations at five different instances are shown
in Fig. 12. The maximum nondimensional temperature for pure conduction cooling is about
θmax= 7.8; for forced convection withRe= 2π andPr = 1.0 the maximum temperature
is reduced toθmax= 2.2. ForRe= 2π andPr = 10.0, the maximum temperature is further
reduced toθmax= 1.0. The results indicate considerable reduction in the maximum nondi-
mensional surface temperature due to the time-periodic forced convection effects. Detailed
analysis of the MHS devices is presented in [22].

5. SUMMARY AND CONCLUSIONS

We developed a spectral/hp element method based on the ALE formulation of two-
dimensional Navier–Stokes and scalar transport equations in moving domains. The new
algorithm uses a combined unstructured/structured grid, which offers great flexibility in
mesh discretization. Spectral convergence characteristics of the algorithm allow utilization
of relatively fewer degrees of freedom than low-order methods for a desired accuracy. This
is an advantage in reduction and management of data. Also, utilization of relatively larger
elements than the low-order methods enables spectral element ALE algorithms to sustain
more severe mesh deformations than their low-order counterparts, reducing or eliminating
the necessity for remeshing.

The thermal/fluidic transport problems have different diffusion/convection time scales.
In the time-periodic examples of the MHS or micro-mixers, accumulation of phase and
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dissipation errors can become problematic. Especially simulations forPr = 10, compared
to the Pr = 1 case, require approximately an order of magnitude increase in simulation
time to reach time-periodic solutions. For long time-integration cases, spectral/hpmethods
exhibit exponential reduction in the time rate of growth of phase and dissipation errors.
This constitutes an experimental justification for using high-order methods.

Finally, the new algorithm allows development of coupled interdisciplinary simulation
tools for conceptual design and verification of micro electromechanical systems. The micro-
mixer and the MHS examples given in this paper are purely conceptual devices, developed
using the new ALE algorithm.
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